FACULTY OF SCIENCE AND TECHNOLOGY

DEPARTMENT OF SURVEYING AND GEOMATICS

TOPIC

OPTIMISATION OF PRIMARY HEALTH CARE FACILITY LOCATION, CASE OF GWERU DISTRICT.

NAME: TENDAI NKOMO

REG NUMBER: R141239V

SUPERVISORS: DR. P.T. MAKANGA & MR P. MUCHECHETERE
APPROVAL FORM

The undersigned certify that they have supervised the student Tendai Nkomo in a dissertation entitled “Optimising primary health care facility location: A case of Gweru District”, submitted in the partial fulfilment of the requirements of the Bachelor of Science Honours Degree in Surveying and Geomatics at the Midlands State University.

……………………………………………………………………
SUPERVISOR

……………………………………………………………………
CHAIRPERSON
RELEASE FORM

NAME OF STUDENT: TENDAI NKOMO

DISSERTATION TITLE: Optimisation of primary health care facility location: case of Gweru District

DEGREE TITLE: Bachelor of Science Honours Degree in Surveying and Geomatics.

YEAR THIS DEGREE WAS GRANTED: 2018

Permission is hereby granted to the Midlands State University Library to produce single copies of this dissertation and lend or sell copies for private, scholarly or scientific research purpose only. The author reserves other publication rights. Neither the dissertation nor the extracts from it may be printed or otherwise produced without the author’s written permission.

SIGNED:

...

PERMANENT ADDRESS: 365 Mandava
Zvishavane
DEDICATION
I would like to dedicate this dissertation to my late mother Sithembile Marashanye who taught me to preserve and prepared me to face the challenges with faith and humility. She was constant source of inspiration to my life. Though she is not here to give me strength and support I always feel her presence that urge me to strive to achieve my goals in life. Rest in Peace.
ACKNOWLEDGEMENTS
All praise, honour and glory be to my Lord Jesus Christ for His grace and mercy for the accomplishment of this dissertation. Without His blessing this achievement would not have been possible.

I would like to thank my supervisors Dr P T Makanga and Mr P Muchechetere for taking me through this long journey, without them the study would not have been a success.

I am also thankful to my friends and colleagues for their incredible in spite of their busy schedules and responsibilities.

Finally my deepest gratitude to my family for their prayers and support which raised me to this level.

Once again I thank you all
ABSTRACT
As access to health care is a human right in Zimbabwe it is expected that primary health facilities should be optimally located to serve demand. It is therefore a challenge for the government and policy makers to provide primary health facilities which are optimally located to serve demand conveniently. This paper highlights a GIS method for optimising location of primary health care facilities. The study area is Gweru district in Zimbabwe. Using location allocation models in ArcGIS optimal location of primary health facilities in Gweru district were selected and also the existing locations were assessed to see if they are well located to serve the population as well. The important factor of locating primary health care facilities is the location of demand that require health services from a Primary health facility, here the population dataset downloaded from World pop website was used to estimate the distribution demand. Spatial accessibility is the essential principle of primary health care hence it is important to consider the relations between the location of demand, location of PHCs and the method of transport linking people with the services. In this study road network downloaded from Open Street was used to link facility and the demand. Also candidate facilities were obtained from the fishnet grid and the existing facilities were downloaded from the humanitarian data exchange. Maximize capacitated model was utilised to obtain the theoretical optimal location of primary health facilities in Gweru district and it was found that 68% of the population is served by the locations. Then the current distribution PHCs and their catchment area were evaluated, only 37% of the demand have good access to health care. Finally the results from the theoretical locations were compared with the existing locations. Results indicated that most of the people residing in rural areas were outside the service area as defined by the standard travel distance of 5km. The comparison results indicate that the existing facilities are not optimally located and have low accessibility than the intended locations.
TABLE OF CONTENTS

Contents

RELEASE FORM ... ii
DEDICATION ... iii
ACKNOWLWDGEMENTS ... v
ABSTRACT ... vi
LIST OF FIGURES ... ix
LIST OF ACRYNOMS ... x

1. CHAPTER ONE .. 1
 1.1 Introduction ... 1
 1.2 Background ... 1
 1.3 Problem statement .. 3
 1.4 Objectives .. 4
 1.5 Research Questions .. 4
 1.6 Justification ... 4
 1.7 Methods .. 4
 1.8 Research Structure .. 5

2. CHAPTER TWO ... 6
 2.1 Literature review ... 6
 2.2 Concept of primary health care ... 6
 2.3 Factors used to determine best sites for primary health care facilities 7
 2.4 Geographic information system (GIS) ... 7
 2.5 Access to health care ... 8
 2.6 GIS in site selection ... 9
 2.7 GIS methods that have been used in health facility site selection 9
 2.7.1 Multicriteria evaluation analysis ... 9
 2.7.2 Location allocation models ... 11

3. CHAPTER THREE .. 18
 3.1 Methodology .. 18
 3.2 Study area ... 18
 3.3 Data collection and data sources ... 19
 3.3.1 Population dataset ... 19
 3.3.2 Health facilities ... 20
 3.3.3 Road network ... 20
 3.4 Methodology structure ... 22
3.4.1 Establishing demand points ... 23
3.4.2 Establishing candidate points ... 24
3.4.3 Creation of network dataset for road .. 24
3.4.4 Creation of network model ... 24
3.5 Location allocation analysis ... 24
3.6 Location allocation process ... 25
3.7 Evaluation of the location of existing primary health facilities 27

CHAPTER FOUR ... 29
4 RESULTS AND DISCUSSION .. 29
4.1 Theoretical optimal location of PHCs ... 32
4.2 Evaluation of the location of existing primary health facilities 36
4.3 Comparing the theoretical locations with the existing locations 40

CHAPTER FIVE ... 43
5 Conclusion recommendations and limitations ... 43
5.1 Objective 1 ... 43
5.2 Objective 2 ... 43

REFERENCES .. 45
LIST OF FIGURES

Figure 1 Components of primary health care .. 7
Figure 2 Components of GIS .. 8
Figure 3 Study Area ... 18
Figure 4 Population distribution .. 19
Figure 5 Location of existing primary health facilities .. 20
Figure 6 Road network .. 21
Figure 7 Flow diagram for methodology .. 22
Figure 8 Methodology for establishing demand points .. 23
Figure 9 location allocation process .. 25
Figure 10 Demand points ... 29
Figure 11 Candidate points ... 30
Figure 12 Network dataset ... 31
Figure 13 Network model .. 31
Figure 14 Location allocation using impedance of 10km ... 32
Figure 15 optimal location of PHCs in Gweru Urban .. 35
Figure 16 Optimal location of PHCs in Gweru rural ... 36
Figure 17 Service area for existing facilities .. 37
LIST OF ACRYNOMS

ESRI - Environmental Systems Research Institute

GIS - Geographic Information System

PHC - Primary Health Care

WHO - World Health Organisation
1. CHAPTER ONE
1.1 Introduction
Health centres directly add to the health of the individuals and communities. Primary health care facilities are responsible for the public health and they usually belong to state authorities. They provide quality health services, primary care as well as health education. (TARSC and CWGH, 2009) illustrated that primary health care aims to respond impartially, suitably, and viably to fundamental health needs and to address the essential social, financial, and political effects of poor health, to enhance availability to basic health services and to include the participation of communities. Primary health care facilities are required to be optimally distributed in order to archive their goals and serve the population.

Poor location of primary health care facilities results in a number of problems which include adverse pregnancy outcomes, decreased vaccination coverage, increased infant mortality and decreased contraceptive use (Tanser, 2006). To solve these problems proper location of primary health facilities is required. Geographic information system (GIS) has a number of analysis tools that are used to determine optimal site (Witlox, 2005). Thus this research is aimed to determine the optimal location of primary health care facilities in Gweru district through the use of geographic information system.

1.2 Background
In Zimbabwe health service is delivered through are primary, secondary, tertiary and quaternary health care. In the country health services are mainly executed through PHCs and fundamental components of primary health care incorporates maternal and child health services; health education; nutrition education and food production; expanded programme on immunization; communicable diseases control; water and sanitation; essential drugs programme; and the provision of basic and vital preventive and curative services. (Madzorera and Gwinji, 2009)

Through the National health strategy, the government of Zimbabwe recognises equity in health care, universality and quality as the essential principles in the delivery of health care services (AIDS & TB Unit, Ministry of Health & Child Welfare, 2013). The principle of universality calls for measures that confirm that all people have access to primary health care facilities. In order to achieve this, efficient methods should be applied in locating health care facilities so as to ensure accessibility. Primary health care prevent the spread of diseases if
they are optimally located. According to (Starfield and Shi, 2007), primary health care is viewed as the best way of reducing imbalances in health care services.

Geographic information system methods efficiently focus on relevant population needing health care services and accomplishing universal health coverage (Roth et al). Geographical information systems are often used in site selection problems to efficiently determine the optimal location of finite resources. (Tanser, 2006) took into account travel time, the distribution of the health services, distribution of the population they serve and applied GIS technology to efficiently site new facilities in order to achieve the maximum population level increase in accessibility to primary health care. In 2012 Zhou and Wu adopted GIS-based multicriteria analysis to select a site for building a new hospital in Haidian District. Ahmed et al (2016) integrated Geographical Information System (GIS) with Analytical Hierarchy Process (AHP) to develop a Multi-Criteria Decision Support System (MCDSS) to determine the optimum site for a new hospital in the Aswan urban area. (Thosso, 2007) used GIS to develop a landfill site selection model in Bloemfontein, Lesotho. The application of GIS in site selection is also functional in Zimbabwe. In 2017 Zulu and Jerie conducted a study in which they used GIS to map the optimal sites for locating a dumpsite in Bunkent.

According to Thomas and Penchalsky 1981 as sited by (Alfaqeeh, Ghadah, 2015) Access to health care is defined in terms of availability and physical accessibility. Availability is the number of people per facility and physical accessibility is the location of facility in relation to that of demand. Primary health facilities reduce inequalities in health service delivery if they are well located. The current method used in establishing these facilities does not consider the spatial distribution of the population. In Zimbabwe there is no documentation on how the location of primary health care facilities was determined. Information obtained through communication with the Gweru city council urban planner portrayed that primary health care facilities are located based on population density. With the guidelines of the Regional town and country planning act (RCTP) of Zimbabwe and master plan planners considered different factors for establishing primary health facilities such population, topography and required space. However the number of people require health service (population) is the key factor.

Currently Planners utilize stands or housing units and house density population to locate at least one facility per neighbourhood each neighbourhood having a population of about 10 000 people. With this concept only the availability component of access to health is considered. The current methods determine the demand using stands and housing density. The
assumption is that each housing unit has a population of 6 people which might not be true. Also the facility is located and the central point of the demand and travel distance from demand to facility is measured in straight line, they make use of buffer zones which is not appropriate since people travel through a road network.

In order to improve access effective methods should be applied in locating primary health facilities and evaluate if the existing facilities are well located to serve the population.

However this study is aimed to utilize geographic information system method to optimally locate the primary health facilities in Gweru district with population per facility and travel distance through the road network from demand to facility as the key factors of measuring accessibility.

1.3 Problem statement

Spatial accessibility is the interaction of health facility location, demand location and mode of transport used to link demand with the facility. To ensure sustainable health service delivery in Zimbabwe primary health facilities should be optimally located. The service provider ratios are utilised but they are failing to meet the expectations of sustainable health delivery system. Current methods utilised in establishing location of primary health care facilities does not consider the spatial spread of the population. This is shown by long queues, waiting times as well as travelling long distances to health care facilities which indicate poor accessibility and proclaim decline of sustainable service delivery. Also travel distance from demand to facility is measured in a straight line which is not appropriate since people travel through the road network and this impede accessibility since people will be forced to travel distance which is more than the recommended, therefore enhanced methods and tools should be used for determining the optimal location of primary health care facilities and also for evaluating the accessibility of existing facilities so as to identify areas with shortages and allocate resources in order to improve accessibility.

However this study is aimed to utilize geographic information system method to optimally locate the primary health facilities in Gweru district with population per facility and travel distance through the road network from demand to facility as the key factors of measuring accessibility.
1.4 Objectives

- To determine the theoretical optimal location for primary health care facilities in Gweru district.
- To evaluate if primary health care facilities in Gweru district are optimally located to serve the population.

1.5 Research Questions

1. On theoretical basis, what are the optimal location for primary health care facilities in Gweru District?
2. How do the intended optimal location compare with the existing locations?

1.6 Justification

There are other methods currently being used for locating the new sites for primary healthcare facilities, but in this study there is intended to be made use of GIS technology as it has proved to be more efficient in other studies of similar problem. With GIS access to health care facilities can be improved by locating primary health facilities on optimal sites (Witlox, 2005). Mclafferty, 2013 illustrated that geographic information system technology provides a number of tools that help health planners to understand the geographic variation in population and population need for health care services. In 2000, Dikshit et al elaborated that GIS technology is capable of handling large amounts of complex geographic data and significantly aiding the facility siting process. In that way the research is going to bring a solution to problems that were being encountered by the citizens of Gweru in as much as the site locations of primary healthcare facilities is concerned.

1.7 Methods

The first objective was solved by using population dataset and road network dataset for Gweru District. Population dataset was downloaded from world pop website. The dataset was obtained in raster format and was converted to points so as to get the population distribution. The road network datasets was downloaded from openstreet.Road network dataset has missing roads on the rural side of the district, manual digitizing was conducted to fill the missing data. Candidate facilities for were established by creating a fishnet grid of points, then a network dataset was developed. A location allocation analysis was performed between the candidate facilities, road network and population using location allocation tool in ArcGIS to determine the optimal locations for primary health facilities, the intended locations were
compared with the existing location to see how well the current facilities are located to serve the population in Gweru district.

1.8 Research Structure
The research is organized into five chapters. The first chapter is consisted with the introduction and background of the study. It also presented the research problem, research objectives and the main research questions. Chapter 2 is literature review which highlights the relevant literature relating to finding optimal site location for primary health facilities. It also provides an overview of geographic information system, its applications in facility location and the methods used to determine optimal locations for health facilities. Chapter 3 is the methodology on which the methods used to answer the research questions and address the research objectives are highlighted. It provides the data sources, the procedures used to collect, process and analyse the data. Chapter 4 is about the presentation of results. It provides the discussion and analysis of results obtained from the procedures carried out from the methodology. It presents how the locations determined from the steps in chapter 3 compare with the existing locations. Chapter 5 is the final chapter of the research which provides the recommendations and conclusions. It summarises the key findings of the research and provides recommendations to the decision makers.
2 CHAPTER TWO

2.1 Literature review
This chapter is aimed to review the critical points of current knowledge including key findings related to the application of geographic information system technology in determining the optimal site location for primary health facilities. In this chapter the researcher will review articles published on the concept of primary health care, an overview of GIS, access to health care, application of GIS in site selection and the methods used in determining optimal sites for health care facilities.

2.2 Concept of primary health care
Primary health care is viewed as health care accessible to every individual in the community at affordable cost and with their full participation(Starfield and Shi, 2007). Primary health care has played a pivotal role in promoting human well-being, improving people’s health and building a harmonious nation. It is the basis of care and more often the first point of contact that individuals have within the health care frame work(Medicine and Review, 2015).Primary health care contributes to the economic development of a nation and it also frames the vital part of the nation ‘s health system. According to(Guagliardo, 2004) if PHC facilities are optimally located the effectively reduce imbalance in health care delivery and prevent the spread of disease.

Primary health care focus on providing the following components
2.3 Factors used to determine best sites for primary health care facilities

In order to identify optimal site location for primary health care facilities, there are certain factors that must be considered. According to Kao and Lin (1996) as sited by (Thosso, 2007), It is vital to include criteria from the social, spatial, economic, political and ecological dominions of the problem. Youzi et al (2017) illustrated that in order determine the best suitable sites for primary healthcare facilities, there are principles and indicators that should be considered and these are access principle, distance principle, neighbourhood principle, radius of service area and population criterion.

2.4 Geographic information system (GIS)

According to Environmental Systems Research Institute (Esri, 2012) Geographic information system (GIS) is a collection of hardware, software, geographic data and users. It also includes the methods designed for capturing, storing updating, manipulating, analysing, and displaying various forms of geographic data. GIS relates geographic locations on earth with the attribute information enabling consumers to visualize patterns understand relationships and trends. It is consisted of five key components which are hardware, software, data, people and procedures.

2.4.1 Components of GIS
2.5 Access to health care

Health care is the provision of medical care to individuals and community. Access to health care is one of the important principles of primary health care. It is the capacity of individuals to get care when they require it, regardless of one’s capacity to pay for it, (Bissonnette, 2009). Numerous medical issues are preventable and curable through enhanced access to health care services. The creation of a satisfactory meaning of access is difficult since access is impacted by numerous factors.

Some researchers have characterized access as the capacity to utilize health care services and others contended that access is formed by variables influencing the utilization of health care services, (‘Barriers Preventing Access To Health Care Services’, 2005). (Discovery et al., 2011) illustrated that access to health care implies having the timely utilization of individual health services in order to accomplish the best health outcomes. More over, achieving good access to health care requires getting entry into health care system, having access to health care facility sites and finding suppliers who address the issues of individual patients and with whom patients can build up a relationship in view of common correspondence and trust. (Mcintyre and Ataguba, 2009) elaborated that access depend on the convenience, affordability and acceptability of health care services. Affordability concerns the level of fit between the full expenses of utilizing health care services and people's capacity to pay with regards to the family unit spending plan and different requests on that financial plan. Acceptability is much more about the fit among supplier and patient mentalities towards and
desires for one another. However these definitions ignored the impact of the barriers of access.

However this study make use of the maximum demand a facility can serve and the total travel distance to optimally distribute health facilities in Gweru district so as to ensure access to health care. Moreover, according to (Kemboi and Waithaka, 2015) access to PHC requires health facilities to be sited on suitable locations in order to deliver service to the population without travelling long distances. According to international standards set by WHO individuals should attain access to primary health care within a travel distance of 5km which is equivalent to 1 hour walking distance(Ofosu, 2012). Population to provider ratio denotes the number health facilities present per a given population. Lower population to provider ratio is better measure of accessibility to health care facility than a higher population to provider ratio since it reduces waiting time.

2.6 GIS in site selection
Optimal site selection is a procedure that asses areas of facilities depending on the predefined criteria. According to Ahmed et al (2016) site selection a decision-making process that requires numerous criteria to be weighted and choices to be assessed and positioned. GIS is best for health facility site selection problems since it is able to handle large amount of data and integrate various information from different levels of jurisdiction,(Phra et al., 2006). In addition, the ability to make overlay functions gives GIS unique power to help in making decisions of determining optimal location for primary health facilities. The GIS database offers efficient and cost effective means of evaluating the best suitable sites for locating health facilities. With GIS technology it is easy to integrate and correlate information linked to the criteria considered in site selection.

2.7 GIS methods that have been used in health facility site selection
Researches have been done to define optimal location for PHCs utilizing different strategies.

2.7.1 Multicriteria evaluation analysis
Multi-criteria analysis is a method used to consider various criteria when making a decision and it gives a consistent procedure to follow so that different factors can be easily recognised. (Zhou and Wu, 2012) depicts multicriteria analysis as a methodology that coordinates differing criteria that are fundamental to be to be analysed in decision making. This approach allows the alternative solutions being considered to be ranked in order of suitability that is
criteria are quantified according to their importance and significance. This can be done using the analytical hierarchy process and or the rank order method,(Neufville, 2013) . Analytical Hierarchy Process presented by Satty in 1980, is a method that assigns weights based on a hierarchical framework constructed through mathematical pairwise comparisons. The weights are deduced from the pairwise comparisons of the relative importance between each two criteria(Zhou and Wu, 2012).

GIS-based multicriteria analysis have been effectively used in various studies considering proper criteria and factors. In 2015 Wei and Ding used GIS-based multicriteria analysis in order to find suitable sites for residential areas.(Zhao, 2015) determined optimal location for sewage plant in china using multicriteria analysis and the results showed that optimal site was successfully selected. Another study by (Lin and Zu, 2013) used GIS-based multicriteria analysis for locating coffee shops in united states.

Researches using multicriteria analysis in the case of determining optimal location for primary health facilities include: (Ahmed, Mahmoud and Aly, 2016) developed a multicriteria decision support system for determining optimal location for hospital in Egypt through the integration of GIS and AHP. Factors were considered include Water and Air pollution, Green area coverage, accessibility in terms of time and distance means of transport type. Although results showed that optimal site was successfully selected, more factors should be considered. Population distribution should be considered as a factor as well.

A study conducted by Zhou and Wu in 2012 locate a suitable area for building another health facility in Haidian District of Beijing with the utilization of GIS-based Multi-Criteria Analysis. In order to use the multicriteria analysis many different factors were considered .Especially distance from residential and other criteria such as distance from existing hospitals,rivers,public toilet and roads. In the final analysis necessity tests and sensitivity tests were carried out based on factor criteria using AHP and rank order method (ROM). Although an optimal hospital site was determined appropriate data should be used, in this study residential area data was used to represent population of which residential area data cannot accurately illustrate the population density of an area.

A study carried out by Chatterjee and Mukherjee in 2013 implemented a multi criteria evaluation of potential hospital sites in India using Fuzzy Analytical Hierarchy process (Chatterjee and Mukherjee, 2013).In this study cost, population characteristics and location were considered to be major factors .
(Ibrahim and Shouman, 2012) developed a model for determining best hospital location in Benghazi using multicriteria evaluation. (Youzi, Nemati and Emamgholi, 2018) addressed principles to be taken into consideration when selecting location for health centers. In their study they were aimed to optimize location of hospital in Kuhdasht city with the aid geographic information system integrated with analytical hierarchy process.

Furthermore another study aimed to assess the spatial distribution of primary health facility was introduce by Kibon and Ahmed, (Kibon and Ahmed, 2013). In their study they created a database for existing hospitals in order to evaluate the location and spatial distribution of primary health facilities in Kano Metropolis. From the results it was found that health facilities has been provided but they were not optimally located. In addition a similar study by (Ismaila, 2013) portrayed the application of geographic information system showing the spatial distribution and accessibility of health care services in Yola.

Although multicriteria evaluations are successfully used in in finding optimal location for health facilities, it has some limitations. (Comber et al 2011) argued that results from multicriteria analysis ignored the impact of demand in locating health facilities, locations are determined on the basis of their suitability using suitability index. In other words the findings describe the site where facilities could be located ignoring the impact of demand.

2.7.2 Location allocation models

Location allocation is a technique for determining optimal locations for facilities that provide services to the public, (Rahman and Smith, 2000). The location allocation models include the determination of the optimal sites of facilities from a set of candidate locations and in the meantime assigning demands to the intended sites effectively, basing on the spatial distribution of demands (Algharib, 2011). In other words the models simultaneously determine location of facilities and allocate population to facilities (Chang 2012). Location-allocation models seeks to determine best sites for facilities in terms of minimizing total distance or time for users thus location allocation models use different measurements based on travel distance, travel time and any other forms of cost function to determine best suitable locations. (Kemboi and Waithaka, 2015) illustrated that location allocation model contains a set of demand located at points, the candidate locations for service facilities; a distance or time matrix holding distances or traveling time between facilities and demands locations.

According to (Daskin and Dean, 2004), the p-median model, maximum covering model and set covering model are the most location models utilised in health care.
P-median

The p-median model seeks to match supply and demand that is in a given set of demand. This model find the location of p facilities to minimize total weight of travel distance between demands and facilities (Buzai, 2013). According to (Engineering et al., 2012) p median models seeks to locate a number of facilities and allocate demand to them in order to minimize total travel distance from demand to facility. (Mohammadi, Malek and Alesheikh, no date) portrayed that the mathematical formula for median is given as follows:

\[
\text{Minimize} \sum \sum h_i d_{ij} Y_{ij}
\]

\[
\sum_j X_j = 1
\]

\[
\sum_j Y_{ij} = 1
\]

\[
Y_{ij} - X_j \leq 0
\]

\[X_j \in \{0, 1\}\]

\[Y_j \in \{0, 1\}\]

Where \(h_i\) = demand at point \(i\),

\[d_{ij} = \text{distance between demand I and potential facility j}\]

The disadvantage of these models is that individuals living in less accessible areas within the targeted region might travel long distances thus the solutions from this algorithm is biased since some users travel long distances (Meskarian et al., 2017).

Maximal covering problems
These algorithms aim to maximize population coverage within a maximum service distance or time. Candidate facilities are located close to locations with high population density (Engineering et al., 2012). According to (Buzai, 2013) the objective function of maximal coverage models is to minimize demand within a coverage ratio.

Below is the formula for maximize covering:

\[\text{Maximize} \ \{ F = \sum_{i \in I} a_i x_i \} \]

Where \(I \) = group of demand points

\(a_i \) = the population

Set covering problem

Set covering problems seek to select suitable locations for facilities centers in order to minimize cost of demand (Mohammadi, Malek and Alesheikh, no date). These models locate facilities that cover all demand within a specified travel distance or time thereby minimizing the number of facilities. Formulation for set covering models is as follows:

\[\text{Minimize} \ \sum_j c_j x_j \]

\[\sum_{j \in N_i} x_j \geq 1 \]

\[x_j \in \{0,1\} \]

Where \(c_j \) = cost of locating a facility to a node

\(N_i \) = set of facility sites within an acceptable distance

The utilization of location allocation models to locate health facilities integrated with Geographic Information Systems (GIS) has become an essential tool for the decision making process (Menezes and Pizzolato, 2014). The application of location-allocation models in health care aim to improve the maximum amount of demands covered by equitable services that is maximizing the number of people allocated to each facility location and minimizing the total distance travelled to cover, and serve as many as possible in surrounding areas.
Location models have been broadly utilized in different studies trying to optimize site for facility locations so as to ensure universality in health care services. As portrayed by (Daskin and Din 2004) location allocation models have been utilized as decision support tools in health planning. (Rahman and Smith, 2000) carried out a study that aims to review the use of location allocation models in developing countries for health facility planning. In their study they provide a review of the use of location analysis to find set of optimal sites, location suitable sites in a new area, measuring the effectiveness of past location decision and finally improve existing location pattern in developing countries.

(Buzai, 2013) applied location allocation techniques to optimize primary health centres in the city of Lujan, Argentina. In this study the problem was solved as maximal covering location problem and the population centroids were treated as demand points as well as candidate facilities. In any case no mathematical formulation of the issue was given which would seem to be inappropriate. A similar study carried out by (Galvão, Espejo and Boffey, 2006) utilized location allocation models to locate maternal and prenatal health services in Rio. The objective was to distribute health care facilities in order reduce perinatal mortality in Rio. Their problem was maximal covering problem with facility capacity constraints. The model developed produced good distribution of perinatal facilities.

Furthermore another study carried out in Ecuador validate how location analysis could be applied in defining the optimal allocation of primary health facilities , (‘Allocating Health Centers in a Resource - Constrained Setting in Ecuador’, 2013). In this study the problem was expressed as a maximize coverage location problem and a maximize capacitated model was employed due to ability to model reality when the facility limit constraints are specified and it also allow to set distance threshold. The study achieved its goals and the results showed that location allocation models successfully allocate the health facilities efficiently in the most optimal areas closest to vulnerable areas. However it appeared that the total travel distance between demand and facilities were restrictively high therefore impedance cut-off should be considered. Indicating impedance cut off can minimize the travel distance between the population and the facilities.

(Comber et al., 2011) developed a model for locating bioenergy facilities using GIS-based location allocation algorithms. The model developed in this study was an extension to p-median model. It took into account the spatial distribution of resources and their competition by facility locations. Furthermore another study carried out by Meyer in 2011 addressed the
application of location allocation model in selecting optimal sites for fire stations in Toledo. The study seeks to increase safety and protection by improving efficiency of coverage based on minimizing the total travel time. A similar study introduced by Agharib in 2011 applied GIS and location allocation models to evaluate the spatial distribution of fire stations in Kuwait city in order to determine optimal location for new fire station and to analyse if the existing stations are optimally located to cover all demand (Algharib, 2011). The study addressed the advantages of using location allocation model in site selection. Findings portrayed that the objectives were successfully met using allocation models.

Increasingly (Meskarian et al., 2017) demonstrated how locational techniques can be successfully implemented to optimize sexual health services in Hampshire. The objective was to reduce number of facilities while improving access to service, hence they articulated the problem as maximal coverage problem. The problem was solved by greedy algorithm. The results from the algorithm showed that it required 25 facilities for full coverage. The results proved that under time constrained and resource scarce, one can accomplish great solutions utilizing greedy algorithm. However the new facilities selected by location allocation may not be worthwhile because of appropriate premises.

(Kemboi and Waithaka, 2015), in their study defined the utilization of GIS to improve geographic accessibility to health care services in Mt Elgon Sub-county. In their study finding optimal sites for locating health facilities was expressed as a maximal covering problem. The population centres were used as demand points, existing health facilities were used as facilities and a travel distance of five kilometres was set as the impedance cut off so as to show the population covered and not covered by the existing facilities in order to determine best locations that maximize the total number of people covered within the threshold of service distance.

The location allocation methods reviewed in this study have been planned as either p-median or maximal covering problems. The aim of p-median problem is to minimise travel distance between facilities and demand by locating a given number of facilities and the objective of maximal covering problem is to optimize a certain number of facilities so as to maximize demand within a recommended service distance. However most of the location models reviewed in literature depicted that the health facilities being located serve infinite demand which may cause congestion at the facilities. The researches focused only on the physical accessibility element of health coverage and not considering the other elements like
Availability. Availability is the number of health facilities per given population. Therefore not taking facility capacity into consideration may hinder accessibility to health service.

ArcGIS network analyst

According to (Menezes and Pizzolato, 2014), ArcGIS network analyst extension provide the spatial analysis in a transportation network. This extension solve various problems like closest facility, service area and location allocation and there is a different solver for each problem. Regarding to heath facility location problem this tool permits the consideration of distances along the street networks. Increasingly (Kus, Cheu and Horak, 2016) portrayed that ArcGIS networks are grouped as geometric datasets and network datasets. Geometric data sets are intended for modelling waterways, river networks and utility network. The way is determined by external forces like gravity thus the movement in these datasets is permitted only in one direction. Network datasets were intended for modelling transportation network and as opposed to the geometric datasets, travel is permitted in both directions in the network dataset. Furthermore a network dataset must be appointed first in order to run any solver in a network analyst. A network datasets is consisted of the edges and connecting junctions. Utilizing these elements the genuine network is defined and they illustrate possible routes from one area to another (Resources ArcGIS, 2014). This study used this tool for analysis of primary health facility location problem.

Location allocation models in ArcGIS

According to (ESRI, 2012) ArcGIS support several location allocation models which are appropriate for locating primary health facilities and these are:

Table 1: Location allocation models in ArcGIS

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximise coverage</td>
<td>Maximises the number of users covered within a specified distance.</td>
</tr>
<tr>
<td>Maximise capacitated coverage</td>
<td>Allocates a number of facilities with a finite capacity.</td>
</tr>
<tr>
<td>Minimise impedance</td>
<td>Minimise the total travel distance or cost of users</td>
</tr>
<tr>
<td>Minimise facilities</td>
<td>Find a minimum number of facilities within a specified distance.</td>
</tr>
</tbody>
</table>
The location allocation analysis solve location problems by applying the heuristic algorithm. The algorithm starts by utilizing the Dijkstra algorithm to generate the origin destination matrix of all the shortest routes between the demand and suitable facilities locations in the network. (Avery, 2014).
3 CHAPTER THREE

3.1 Methodology

This chapter seeks to give an outline of methods of data collection, data processing and analysis. This study applied GIS methods based on location allocation with the following objectives:

- To determine the theoretically optimal location for primary health care facilities in Gweru district.
- To evaluate if primary health care facilities in Gweru district are optimally located to serve the population

3.2 Study area

Figure 3 Study Area

Source: Author

Gweru district constitute of Gweru urban and Gweru rural. It is the capital of Midlands province and it is located near the geographical centre of Zimbabwe. Gweru district had a population of 225139 according to 2002 census the population increased to 249671 in 2012
There are 37 health facilities in Gweru district with 10 being operated by Gweru city council. (ZimHealth strategic plan., 2016).

3.3 Data collection and data sources.

The researcher conducted an interview with Gweru municipality urban planner in order to get information on how they locate primary health facilities and also the parameters utilised in determining locations of these facilities in Zimbabwe.

The researcher made use of secondary datasets derived from various sources. These were comprised of road network, population distribution and locations of existing health facilities.

3.3.1 Population dataset

Population dataset was downloaded from World pop website (www.worldpop.org.uk). The dataset was obtained in raster format. It provide number of people per 100mx100m area. To determine the population distribution the raster population was converted to points using conversion tools in ArcGIS, and the vector points were extracted using extract values to points.

![Figure 4 Population distribution](image-url)
3.3.2 Health facilities
Health facility dataset was extracted from humanitarian data exchange, online database. The dataset provide GPS coordinates for primary health facilities in Gweru District.

![Location of existing primary health facilities](image)

Figure 5 Location of existing primary health facilities

3.3.3 Road network
Road network dataset was downloaded from open street online database. The dataset consisted of only highways, major roads. The dataset was inadequate for this study since it only provide roads for the urban area and insufficient roads for the rural side of the district. The missing roads were filled by manual digitizing from high resolution google satellite base maps. The purpose of the road network was to link demand to facility by travelling through the network. According to (Avery, 2014), the road network should be linked and snapped together at the intersections to enable turns to be done during the analysis process. Here a road network topology was created to ensure that the roads are snapped and linked at the intersections. This was done by using the feature to line tool in ArcGIS.
Figure 6 Road network

Source: Author
3.4 Methodology structure

Figure 7 Flow diagram for methodology

Source: Author
3.4.1 Establishing demand points

Population centroids were used as demand points. These centroids were established by converting the world pop raster population to points. Firstly, the district was separated into urban and rural. The demand points for urban were established separately from those of the rural since the population densities of the urban and rural part of the district differ. For Gweru urban, the raster population was aggregated by a factor of three so as to get 300m x 300m population grids and for rural raster was aggregated by a factor of ten. The population grids were then converted to points and the points were then used to extract raster values to points in order to obtain weighted population points which represent grid centroids. Thereafter, the points for urban and rural were merged to obtain demand points for the district.

Process of establishing demand points

Figure 8 Methodology for establishing demand points

Source: Author
3.4.2 Establishing candidate points
Candidate points were obtained from fishnet grid so as to obtain evenly spaced points of the area. Two grids were created one for urban and the other for rural. The grid for urban was made at a cell size of 200m since urban area is densely populated and the one for rural has a cell size of 500m for the population in dispersed. The two grids were merged to obtain candidate facilities for the district.

3.4.3 Creation of network dataset for road
The network dataset was made by utilising road network data. Any junction on the road network which encompasses an intersection of links was assigned a node in the dataset. These nodes enable turns during analysis.

3.4.4 Creation of network model
After creating a network dataset the researcher built a network model using road network dataset, facilities and demand. This model shows how demand is linked to facility through the existing road network.

3.5 Location allocation analysis
In this study the problem of determining the optimal location for primary health facilities was expressed as a maximal covering problem and the maximise capacitated coverage model utilised because it maximises the number of people covered by a facility within a specified distance and also considers limit of a facility. With this model demand was allocated to the closest facility and along these lines if the closest facility achieved its ability limit demand was then allocated to the second closest facility and so on.
3.6 Location allocation process.

Figure 9 location allocation process
Facilities

These can be represented candidate, required competitor and chosen facilities. Here facilities were represented by candidate facilities. These were candidate points obtained from fishnet grid and these were the possible potential sites for locating primary health facilities.

The properties of facility incorporates weight and capacity. In this study the facilities had a default weight of 1.0 since they are similarly important in serving the population. Each facility has capacity of serving 10000 people.

Demand

Demand points represent the population that need health services from the facilities. In this study demand points are weighted population points extracted from the world pop grid population. Demand weight is the amount of people that require service from a facility, in this case demand weight was represented as the population per point which is the number of people per grid.

Analysis properties

Facilities to choose and impedance cut of are the essential properties of the analysis parameters. Here 28 facilities were selected and below is the mathematical formula utilized to obtain the number of facilities to choose.

\[
\text{Facilities to choose} = \frac{\text{population}}{\text{facility capacity}}
\]

Then a recommended travel distance of 5km from demand to facility was set as an impedance cut off and the direction of travel was set from demand to facility. Finally the location allocation model was executed to determine the optimal locations for primary health care facilities.

In summary the researcher conducted a network analysis by clicking on new location allocation then on network analyst window click on facilities move on to load facilities and these facilities were the evenly distributed points obtained from fishnet which represent potential sites for locating primary health care facilities. In the facility tab the researcher selected candidate as facility type and accepted default since all facilities has similar importance on serving demand. Next demand points were loaded which in this study were
population points. After loading facilities and demand it was required to set some location allocation specifications, in the analysis settings the travel from demand to facility was selected since people travel from their homes to facilities in order to seek health care services. Under the advanced settings the problem type was selected as maximize capacitated coverage because it maximizes a finite demand which required health care services within a specified distance. Maximize capacitated model minimizes the travel distance between demand facilities by assigning a fixed number of health facilities with a restricted capacity. Under the facilities to choose 28 facilities were chosen which were obtained from dividing the total demand by the facility capacity. According to WHO the number of health facilities per 10,000 population is the recommended core indicator to assess facility capacity which in this case facility capacity was set to 10,000. Then the impedance cut off which in this case represent the travel distance from demand to facility was set to 5km which is the international standard travel distance recommended by WHO. The location allocation problem was then solved to determine the optimal sites of primary health facilities. Since the population in rural areas is dispersed and also some people who reside in low-density areas can drive or use other means of transport to PHCs another model with an impedance cut off of 10 km was developed to increase accessibility.

3.7 Evaluation of the location of existing primary health facilities

To evaluate if the existing facilities are optimally located to serve the populations, the researcher identified the accessibility to existing primary health facilities through the road network by generating service areas within a distance 5km from the facilities. In the present study the researcher determined the catchment areas within 5km of each facility through points that are located 5km from the facility through the road network. The researcher conducted a new location allocation. Facilities were loaded and in this case facility type was selected as required and default was accepted. The demand points were also loaded and after loading these two the researcher set the location allocation parameters. The problem was formulated as maximize capacitated coverage, a facility limit of 10,000 and 5km travel distance was also specified. The problem was solved and catchment areas covered by existing facilities were defined. The population served by the existing facilities within the specified threshold was determined and also the spatial accessibility of the existing facilities was measured. Catchment area within distance of 10km (double the recommended) were also established to find served and underserved population considering that people may travel to
PHCs using other means of transport than walking and also that the population in rural areas live in scatter settlements.

\[SA = \left(\frac{\text{population covered within the catchment area}}{\text{total population}} \right) \times 100\% \]

Comparing the existing locations with the optimal

The catchment area analysis results for the whole district were compared with the optimal. The population served by the existing facilities within the recommended distance was calculated and compared with the population served by the optimal.
CHAPTER FOUR
4 RESULTS AND DISCUSSION
This chapter presents the findings of the analysis in this study based upon the methodologies in addressed in the previous chapter.

The fig 10 below show the demand points obtained from converting the raster population to points.

![Demand points](image)

Figure 10 Demand points

Results of the candidate points

The fig 11 below show the results of candidate points obtained from fishnet grid
Figure 11 Candidate points

Results of the network dataset created
After a network data set was developed it was followed by building the network model that link the demand with the facilities through the road. Below is the structure of the network model developed.

Figure 12 Network dataset

Figure 13 Network model
4.1 Theoretical optimal location of PHCs
In this study the first objective discussed in the methodology is determining the theoretical optimal locations for primary health facilities in Gweru district. The researcher applied maximize capacitated coverage location allocation model. The analysis allocate demand to the nearest facility and along these lines if the nearest facility achieved its ability limit demand was then allocated to the second closest facility and so on till all the demand points are allocated to the facilities. Fig (14) shows the results of maximize capacitated coverage model with impedance of 10km distance. The map shows the theoretical optimal locations of PHCs in Gweru district.

![Optimal location for primary health care facilities in Gweru District](image)

Figure 14 Location allocation using impedance of 10km

From the location allocation model a total of twenty-eight health facilities were allocated each having a capacity of 10 000 demand. Analysing the accessibility of the allocation 68% of the population has access to primary health facilities within a travel distance of 5km and a facility capacity of 10 000, that is only 18846 people are served out of a total population of 277155. This means that 32% of the population which is 88689 people access the facilities by traveling a distance which is more than 5km from demand to facility. Facilities in rural
areas did not reach their capacity within the 5km distance this is because rural areas are sparsely thus they live in scatter and leap frogging settlements. Also there is high accessibility in the urban area, facilities reach their capacity in a travel distance less than 5km. In urban area people are densely populated on a small area they live in poly-nucleated settlements. Most of the primary health facilities are located in or near the city centre and most of the population residing in Gweru urban are able to access these facilities within the recommended distance. Increasing the impedance cut off by double the recommended travel distance increases accessibility by 8%. Table 1 show the number of people covered within the recommended distance.

Table1: Demand covered within 5km distance with capacity constraint of 10000

<table>
<thead>
<tr>
<th>FacilityType</th>
<th>DemandWeight</th>
<th>Total_Length</th>
<th>TotalWeighted_Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chosen</td>
<td>6233</td>
<td>305195,3654</td>
<td>10173251,34</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>260601,1206</td>
<td>14088594,78</td>
</tr>
<tr>
<td>Chosen</td>
<td>8676</td>
<td>160731,7172</td>
<td>9855357,241</td>
</tr>
<tr>
<td>Chosen</td>
<td>8876</td>
<td>162218,5682</td>
<td>12409561,03</td>
</tr>
<tr>
<td>Chosen</td>
<td>9956</td>
<td>136933,9042</td>
<td>11936771,55</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>231910,103</td>
<td>9739610,834</td>
</tr>
<tr>
<td>Chosen</td>
<td>9975</td>
<td>167429,135</td>
<td>10162416,11</td>
</tr>
<tr>
<td>Chosen</td>
<td>9999</td>
<td>84636,14536</td>
<td>10766920,57</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>140361,0788</td>
<td>11769658,86</td>
</tr>
<tr>
<td>Chosen</td>
<td>9929</td>
<td>48052,98428</td>
<td>9099435,786</td>
</tr>
<tr>
<td>Chosen</td>
<td>9999</td>
<td>183793,7827</td>
<td>11427253,44</td>
</tr>
<tr>
<td>Chosen</td>
<td>7231</td>
<td>275185,6772</td>
<td>13341953,44</td>
</tr>
<tr>
<td>Chosen</td>
<td>9988</td>
<td>187757,238</td>
<td>9726331,458</td>
</tr>
<tr>
<td>Chosen</td>
<td>9972</td>
<td>89692,003</td>
<td>10170547,21</td>
</tr>
<tr>
<td>Chosen</td>
<td>9944</td>
<td>79028,64535</td>
<td>9951036,622</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>231810,3549</td>
<td>12453412,99</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>256620,7042</td>
<td>11847547,64</td>
</tr>
<tr>
<td>Chosen</td>
<td>3024</td>
<td>387664,895</td>
<td>6340522,42</td>
</tr>
<tr>
<td>Chosen</td>
<td>9999</td>
<td>244661,0076</td>
<td>10435707,45</td>
</tr>
<tr>
<td>Chosen</td>
<td>2701</td>
<td>309272,2165</td>
<td>5485655,012</td>
</tr>
<tr>
<td>Chosen</td>
<td>1980</td>
<td>450278,377</td>
<td>5692351,381</td>
</tr>
<tr>
<td>Chosen</td>
<td>1464</td>
<td>294385,237</td>
<td>3851509,345</td>
</tr>
<tr>
<td>Chosen</td>
<td>1467</td>
<td>317082,0031</td>
<td>3567445,244</td>
</tr>
<tr>
<td>Chosen</td>
<td>1330</td>
<td>270384,6792</td>
<td>4084117,924</td>
</tr>
<tr>
<td>Chosen</td>
<td>1903</td>
<td>170547,011</td>
<td>5778357,707</td>
</tr>
<tr>
<td>Chosen</td>
<td>1400</td>
<td>262418,0967</td>
<td>3710493,073</td>
</tr>
<tr>
<td>Chosen</td>
<td>1359</td>
<td>369544,9847</td>
<td>5002405,563</td>
</tr>
<tr>
<td>Chosen</td>
<td>1680</td>
<td>298214,1848</td>
<td>4996889,453</td>
</tr>
</tbody>
</table>
Table 2: Location allocation model using 10000 as facility capacity and 10km travel distance

<table>
<thead>
<tr>
<th>FacilityType</th>
<th>DemandWeight (population)</th>
<th>Total distance (km)</th>
<th>TotalWeighted distance (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chosen</td>
<td>7578</td>
<td>702636,5057</td>
<td>15761828,52</td>
</tr>
<tr>
<td>Chosen</td>
<td>8286</td>
<td>621039,9729</td>
<td>16934717,71</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>356031,7</td>
<td>16271243,84</td>
</tr>
<tr>
<td>Chosen</td>
<td>9994</td>
<td>172905,9216</td>
<td>14142209,22</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>195839,0942</td>
<td>12095125,18</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>544541,3939</td>
<td>11416366,24</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>226368,8695</td>
<td>10066355,88</td>
</tr>
<tr>
<td>Chosen</td>
<td>9999</td>
<td>126594,5209</td>
<td>10813477,8</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>206222,354</td>
<td>11424752,16</td>
</tr>
<tr>
<td>Chosen</td>
<td>9998</td>
<td>132987,9275</td>
<td>9408596,346</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>226032,7442</td>
<td>11281336,69</td>
</tr>
<tr>
<td>Chosen</td>
<td>9803</td>
<td>1606148,054</td>
<td>27104759,22</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>180351,79</td>
<td>10860369,75</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>169893,184</td>
<td>10840835,72</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>122769,7035</td>
<td>11058272,78</td>
</tr>
<tr>
<td>Chosen</td>
<td>7374</td>
<td>1409950,02</td>
<td>27357964,13</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>344143,3789</td>
<td>14535964,9</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>247212,5629</td>
<td>11911024,94</td>
</tr>
<tr>
<td>Chosen</td>
<td>10000</td>
<td>209339,5607</td>
<td>10768792,41</td>
</tr>
<tr>
<td>Chosen</td>
<td>3898</td>
<td>1665441,891</td>
<td>25174002,06</td>
</tr>
<tr>
<td>Chosen</td>
<td>4046</td>
<td>1952152,959</td>
<td>28129856,68</td>
</tr>
<tr>
<td>Chosen</td>
<td>3210</td>
<td>1349702,922</td>
<td>18276294,34</td>
</tr>
<tr>
<td>Chosen</td>
<td>3213</td>
<td>1438427,964</td>
<td>19648264,71</td>
</tr>
<tr>
<td>Chosen</td>
<td>3340</td>
<td>1862189,603</td>
<td>23757650,7</td>
</tr>
<tr>
<td>Chosen</td>
<td>2588</td>
<td>1467266,444</td>
<td>16167817,24</td>
</tr>
<tr>
<td>Chosen</td>
<td>3424</td>
<td>1484540,787</td>
<td>22418985,26</td>
</tr>
<tr>
<td>Chosen</td>
<td>2937</td>
<td>1159351,208</td>
<td>19571212,06</td>
</tr>
<tr>
<td>Chosen</td>
<td>2736</td>
<td>1268261,426</td>
<td>17690421,99</td>
</tr>
</tbody>
</table>
Separate models were developed for rural and urban to see the accessibility of health facilities. In Gweru urban there is a population of 174554 according to world pop statistics and 97% of the population have access to health facilities within 5km travel distance. Fig 15 displays the optimal location of PHCs in Gweru urban district. The map also shows the distance classes which display the distances travelled from demand to facility.

![Optimal location of primary health care facilities in Gweru urban](image)

Figure 15 optimal location of PHCs in Gweru Urban

Fig 16 is a map that shows the optimal location of PHCs in Gweru rural district. It also show the varying distance travelled from demand to facility. People in rural areas travel long distances to health facilities due to poor road network. From the maps it is clearly shown that there is good access to health care in the city and poor access in rural. 97% of the urban population access health facilities within the recommended distance of 5km and only 14% of the rural area have access to care within the standard distance. More facilities had been located on more dense areas of the district. This shows that facilities are located with respect to population growth. For example Mkoba is a high dense residential area and it can be seen that there is high concentration of primary health facilities in Mkoba.
Figure 16 Optimal location of PHCs in Gweru rural

4.2 Evaluation of the location of existing primary health facilities
Fig 17 present the population served by the existing primary health facilities within a travel distance of 5km as recommended by WHO. Demand allocation is determined through the real road network though the lines shown do not trace the actual route taken through the network.

Table 3 provides results of the number of people served by each of the existing primary health facilities within 5km. These results seem to show that the existing facilities are not optimally located to serve demand. Only 37% of the population can access the existing facilities within the recommended distance. This result depict that people walk more than 5km to access the health facilities.
Map showing population served by existing facilities considering capacity and distance threshold.

Figure 17 Service area for existing facilities
Table 3: Location allocation model using 10000 as facility capacity and 5km travel distance as impedance existing primary health care facilities.

<table>
<thead>
<tr>
<th>Name</th>
<th>FacilityType</th>
<th>DemandWeight (population)</th>
<th>Total distance travelled(km)</th>
<th>TotalWeighted dist (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiundura</td>
<td>Required</td>
<td>143</td>
<td>11924</td>
<td>455878</td>
</tr>
<tr>
<td>Connemara</td>
<td>Required</td>
<td>754</td>
<td>1346</td>
<td>188315</td>
</tr>
<tr>
<td>Gunde</td>
<td>Required</td>
<td>315</td>
<td>15203</td>
<td>100603</td>
</tr>
<tr>
<td>Kabanga</td>
<td>Required</td>
<td>1136</td>
<td>18027</td>
<td>297640</td>
</tr>
<tr>
<td>Lower Gweru</td>
<td>Required</td>
<td>487</td>
<td>17864</td>
<td>153671</td>
</tr>
<tr>
<td>Maboleni</td>
<td>Required</td>
<td>689</td>
<td>19177</td>
<td>231041</td>
</tr>
<tr>
<td>Madhikani</td>
<td>Required</td>
<td>1347</td>
<td>13856</td>
<td>312677</td>
</tr>
<tr>
<td>Makepesi</td>
<td>Required</td>
<td>104</td>
<td>3447</td>
<td>218313</td>
</tr>
<tr>
<td>Mangwande</td>
<td>Required</td>
<td>156</td>
<td>6928</td>
<td>291892</td>
</tr>
<tr>
<td>Vungu</td>
<td>Required</td>
<td>542</td>
<td>96208</td>
<td>102324</td>
</tr>
<tr>
<td>Whahwa</td>
<td>Required</td>
<td>614</td>
<td>19618</td>
<td>214079</td>
</tr>
<tr>
<td>Masvori</td>
<td>Required</td>
<td>561</td>
<td>10800</td>
<td>142460</td>
</tr>
<tr>
<td>Miez</td>
<td>Required</td>
<td>108</td>
<td>55676</td>
<td>235536</td>
</tr>
<tr>
<td>Nkululeko</td>
<td>Required</td>
<td>516</td>
<td>68549</td>
<td>113502</td>
</tr>
<tr>
<td>Ntabamhlope</td>
<td>Required</td>
<td>248</td>
<td>168845</td>
<td>722730</td>
</tr>
<tr>
<td>Somabula</td>
<td>Required</td>
<td>137</td>
<td>34328</td>
<td>311086</td>
</tr>
<tr>
<td>St Patricks</td>
<td>Required</td>
<td>241</td>
<td>71030</td>
<td>566280</td>
</tr>
<tr>
<td>Dabuka</td>
<td>Required</td>
<td>1844</td>
<td>51191</td>
<td>459865</td>
</tr>
<tr>
<td>Kariba</td>
<td>Required</td>
<td>10000</td>
<td>190980</td>
<td>146659</td>
</tr>
<tr>
<td>Ivene</td>
<td>Required</td>
<td>9900</td>
<td>269844</td>
<td>239827</td>
</tr>
<tr>
<td>Totonga</td>
<td>Required</td>
<td>10000</td>
<td>97261</td>
<td>114834</td>
</tr>
<tr>
<td>Monomutapa</td>
<td>Required</td>
<td>10000</td>
<td>80407</td>
<td>111207</td>
</tr>
<tr>
<td>Child Welfare</td>
<td>Required</td>
<td>10000</td>
<td>95966</td>
<td>111941</td>
</tr>
<tr>
<td>Senga Poly</td>
<td>Required</td>
<td>10000</td>
<td>467437</td>
<td>203884</td>
</tr>
<tr>
<td>Mkoba Poly</td>
<td>Required</td>
<td>10000</td>
<td>77030</td>
<td>102714</td>
</tr>
<tr>
<td>Sino Zimbabwe</td>
<td>Required</td>
<td>902</td>
<td>232882</td>
<td>306130</td>
</tr>
<tr>
<td>Nyama</td>
<td>Required</td>
<td>547</td>
<td>117308</td>
<td>118924</td>
</tr>
<tr>
<td>Mkoba 1</td>
<td>Required</td>
<td>10000</td>
<td>102480</td>
<td>105511</td>
</tr>
<tr>
<td>BATA</td>
<td>Required</td>
<td>10000</td>
<td>201200</td>
<td>163449</td>
</tr>
</tbody>
</table>

From the population covered within 5km facilities located in rural areas serve less demand than those in urban probably because there is poor road network in rural. Since location allocation models allocate demand to the facilities using road network. Additionally the
demand of Gweru rural is not high and is dispersed. By increasing the travelling distance to 10km population served by existing facilities increased from 102542 to 121948 people. Table 4 show the population covered by existing facilities within 10km. Facilities located in the central part of the district attain their capacity within a distance less than 5km because there is high population density.

Table 4: population covered by existing facilities within 10km

<table>
<thead>
<tr>
<th>Name</th>
<th>FacilityType</th>
<th>DemandWeight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiundura</td>
<td>Required</td>
<td>427</td>
</tr>
<tr>
<td>Connemara</td>
<td>Required</td>
<td>2088</td>
</tr>
<tr>
<td>Gunde</td>
<td>Required</td>
<td>580</td>
</tr>
<tr>
<td>Kabanga</td>
<td>Required</td>
<td>1136</td>
</tr>
<tr>
<td>Lower Gweru</td>
<td>Required</td>
<td>1887</td>
</tr>
<tr>
<td>Maboleni</td>
<td>Required</td>
<td>1612</td>
</tr>
<tr>
<td>Madhikani</td>
<td>Required</td>
<td>2850</td>
</tr>
<tr>
<td>Makepesi</td>
<td>Required</td>
<td>689</td>
</tr>
<tr>
<td>Mangwande</td>
<td>Required</td>
<td>512</td>
</tr>
<tr>
<td>Vungu</td>
<td>Required</td>
<td>1098</td>
</tr>
<tr>
<td>Whahwa</td>
<td>Required</td>
<td>2113</td>
</tr>
<tr>
<td>Masvori</td>
<td>Required</td>
<td>1111</td>
</tr>
<tr>
<td>Mlezu</td>
<td>Required</td>
<td>835</td>
</tr>
<tr>
<td>Nkululeko</td>
<td>Required</td>
<td>1444</td>
</tr>
<tr>
<td>Ntabamhlope</td>
<td>Required</td>
<td>413</td>
</tr>
<tr>
<td>Somabula</td>
<td>Required</td>
<td>137</td>
</tr>
<tr>
<td>St Patricks</td>
<td>Required</td>
<td>775</td>
</tr>
<tr>
<td>Dabuka</td>
<td>Required</td>
<td>10000</td>
</tr>
<tr>
<td>Kariba</td>
<td>Required</td>
<td>10000</td>
</tr>
<tr>
<td>Ivene</td>
<td>Required</td>
<td>10000</td>
</tr>
<tr>
<td>Totonga</td>
<td>Required</td>
<td>10000</td>
</tr>
<tr>
<td>Monomutapa</td>
<td>Required</td>
<td>10000</td>
</tr>
<tr>
<td>Child Welfare</td>
<td>Required</td>
<td>10000</td>
</tr>
<tr>
<td>Senga Poly</td>
<td>Required</td>
<td>10000</td>
</tr>
<tr>
<td>Mkoba Poly</td>
<td>Required</td>
<td>10000</td>
</tr>
<tr>
<td>Sino Zimbabwe</td>
<td>Required</td>
<td>2073</td>
</tr>
<tr>
<td>Nyama</td>
<td>Required</td>
<td>1310</td>
</tr>
<tr>
<td>Mkoba 1</td>
<td>Required</td>
<td>10000</td>
</tr>
</tbody>
</table>

Table 5 illustrates the number of people served by existing facilities considering that all people are allocated to the nearest facility within 5km irrespective of capacity.
Table 5: population served by existing facilities irrespective of distance

<table>
<thead>
<tr>
<th>Name</th>
<th>FacilityType</th>
<th>DemandWeight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chiundura</td>
<td>Required</td>
<td>143</td>
</tr>
<tr>
<td>Connemara</td>
<td>Required</td>
<td>754</td>
</tr>
<tr>
<td>Gunde</td>
<td>Required</td>
<td>315</td>
</tr>
<tr>
<td>Kabanga</td>
<td>Required</td>
<td>1136</td>
</tr>
<tr>
<td>Lower Gweru</td>
<td>Required</td>
<td>487</td>
</tr>
<tr>
<td>Maboleni</td>
<td>Required</td>
<td>689</td>
</tr>
<tr>
<td>Madhikani</td>
<td>Required</td>
<td>1347</td>
</tr>
<tr>
<td>Makepesi</td>
<td>Required</td>
<td>105</td>
</tr>
<tr>
<td>Mangwande</td>
<td>Required</td>
<td>156</td>
</tr>
<tr>
<td>Vungu</td>
<td>Required</td>
<td>543</td>
</tr>
<tr>
<td>Whahwa</td>
<td>Required</td>
<td>614</td>
</tr>
<tr>
<td>Masvori</td>
<td>Required</td>
<td>562</td>
</tr>
<tr>
<td>Mlezu</td>
<td>Required</td>
<td>109</td>
</tr>
<tr>
<td>Nkululeko</td>
<td>Required</td>
<td>516</td>
</tr>
<tr>
<td>Ntabamholpe</td>
<td>Required</td>
<td>249</td>
</tr>
<tr>
<td>Somabula</td>
<td>Required</td>
<td>137</td>
</tr>
<tr>
<td>St Patricks</td>
<td>Required</td>
<td>242</td>
</tr>
<tr>
<td>Dabuka</td>
<td>Required</td>
<td>1789</td>
</tr>
<tr>
<td>Kariba</td>
<td>Required</td>
<td>7876</td>
</tr>
<tr>
<td>Ivene</td>
<td>Required</td>
<td>3793</td>
</tr>
<tr>
<td>Totonga</td>
<td>Required</td>
<td>39836</td>
</tr>
<tr>
<td>Monomutapa</td>
<td>Required</td>
<td>20056</td>
</tr>
<tr>
<td>Child Welfare</td>
<td>Required</td>
<td>31084</td>
</tr>
<tr>
<td>Senga Poly</td>
<td>Required</td>
<td>8673</td>
</tr>
<tr>
<td>Mkoba Poly</td>
<td>Required</td>
<td>18383</td>
</tr>
<tr>
<td>Sino Zimbabwe</td>
<td>Required</td>
<td>902</td>
</tr>
<tr>
<td>Nyama</td>
<td>Required</td>
<td>547</td>
</tr>
<tr>
<td>Mkoba 1</td>
<td>Required</td>
<td>13062</td>
</tr>
</tbody>
</table>

The results indicated that some of the facilities in Gweru urban like Totonga, Monomutapa, and Childwalfare and Mkoba poly are overburdened. These facilities serve more than the required population to provider ratio.

4.3 Comparing the theoretical locations with the existing locations
Comparing results of the model developed and the existing facilities show that there are inadequate facilities in the city. From the current situation there are 10 facilities in the city and in the model developed 7 additional facilities were located in Gweru urban to make sure that every individual access health facilities at maximum travel distance of 5km each facility with
a capacity of 10,000 people. Comparing results of the two models carried out one for determining theoretical sites and the other for assessing the existing location of primary health facilities it is clearly shown that the existing facilities has lower accessibility than the theoretical locations. The existing locations covered 37% of the population while the theoretical locations cover up to 76%. It is also shown that there are more facilities located in Gweru rural on the existing locations while on the theoretical locations more facilities are located in Gweru urban. Facilities in Gweru urban serves a greater population than those in Gweru rural.

Fig: 18 comparison between theoretical locations and existing location of PHCs

Discussion

The optimal location of primary health facilities were determined using maximize capacitated model with finite capacity. From the location allocation model 28 facilities were located and demand of 10,000 was allocated to each. The study findings show that the determined optimal location achieved a coverage of 76% of the population within the required standards. 32% of the population travels more than 5km from demand to facility. Population
that reside in urban have better accessibility than those that reside in rural areas. Population in urban travel short distances as compared to rural. From the model developed most of the facilities allocated close to city center and most of the population in urban have good access to health care. The location allocation model locate facilities using the road network and there is poor road network in rural areas hence the population has poor access to health care.

Assessment of existing facilities was carried out and the results suggest that the current primary health care facilities are not optimally located to serve demand. The population served by the existing facilities within 5km is limited. Even after increasing the travel distance to 10km there are still some proportions of the population that have limited accessibility. 37% of the population is covered within 5km and population coverage is increased to 44% within 10km. This is because the method used to locate the existing facilities estimate distance using straight lines which is not appropriate since people travel through the existing road network. Moreover there are also some facilities that are overburdened and this might be due to rapid population growth in urban. To compare the existing facilities with optimal the spatial accessibility was calculated, areas with low accessibility has low coverage within the required standards.
CHAPTER FIVE

5 Conclusion recommendations and limitations
In this study the following objectives were addressed

To determine the theoretical optimal location of primary health facilities in Gweru District

To evaluate if the existing facilities are optimally located to serve demand

5.1 Objective 1
The theoretical optimal location of primary health facilities were obtained using maximize capacitated model with finite capacity. The model successfully determine the optimal location of the PHCs. However the model did not allocate all the demand to the facilities under the recommended distance. Only 68% of the population was covered by the intended facilities. The other 32% of the population fall outside the service area which means the travel more than the recommended distance to attain health services. Doubling the recommended distance increase the population cover to 76%.

5.2 Objective 2
Assessment of existing facilities was carried out to see if the existing facilities are optimally located to serve the population. The results of this objective was not favourable. The optimality of existing facilities was examined by calculating the percentages of the population served by these facilities within the recommended distance and it was found that only 37% of the population has good access to the existing facilities. Increasing the travel distance to 10 km also increases the number of demand served. 44% of the demand is covered within a travel distance of 10km. Results indicated that there are some parts of the district that are outside the catchment area as defined by the recommended distance. It can be seen that most of the people residing in rural part of the district has low access to health care services. This could be due to poor road network in rural areas. People residing in the central part of the district (city) have high access to PHCs in the sense that residents in this area live in a poly-nucleated settlements and there are good road networks. However there other facilities like Mkoba, Totonga and Monomutapa are overburdened when demand is allocated to the nearest facility.

Finally results from the service area analysis were compared with the theoretical optimal locations. It was found that the total demand covered by the theoretical optimal locations is more than the demand covered by existing facilities. Also the number of facilities located in Gweru urban by the developed model exceeds the total facilities exist in the city.
In this study the optimal location of primary health facilities were generated by location allocation model. Comparing with the other studies of optimising primary health care facility locations, facility capacity constraint in terms of number of people per facility was taken into consideration and also make use of the existing infrastructure to estimate travel distance. However there are still some weaknesses in this study that need to be improved for future studies.

Results indicated that location allocation can be successfully used to determine optimal location of primary health care facilities. However it should be noted that the optimal locations determined may be located on unsuitable sites such as land occupied by other land uses. This case indicate the weakness of using fishnet on establishing candidate points. Future studies for determining optimal location for PHC should apply suitability analysis on establishing candidate sites. In this study the facilities that are outside the district but within the recommended distance threshold were not considered. To improve accessibility facilities that are outside the region but fall within the required distance should considered.

It is important for policy makers and planner to locate primary health care facilities on optimal sites that serve demand conveniently. GIS- based Location allocation model assist in making decisions on where to locate and also how to assign Also for existing facilities that are overpopulated their capacity should be increased such that they serve demand conveniently. It is also important for planners to utilize this method in assessing the existing facilities so as to see areas with shortages of health services and allocate health facilities to alleviate accessibility problems. Additionally it has been seen that there is low access to health care in rural areas due to poor road networks therefore it is essential for the government to construct good road roads in rural areas in order to achieve its goals of universality and equity in health services. In the past years there is rapid population increase in the city and the study clearly shows that there are some facilities in urban that are overburdened hence it is important for the government ant planners to increase the capacities of those facilities by adding more resources and health workers .Further more primary health facilities should be optimally located targeting current and future users.
REFERENCES

Comber, A. et al. (no date) ‘No Title’.

Medicine, F. and Review, C. H. (2015) ‘Family Medicine and Community Health Primary health care, a concept to be fully understood and implemented in current China’s health

‘No Title’ (2012), (June).

