Feature sensitive and context [in]-sensitive glide formation and coalescence in hiatus resolution in isiNdebele

Sabao C.
Faculty of Arts
Midlands State University
Gweru, Zimbabwe

Abstract
This paper argues for context and vowel-feature sensitive repair of hiatal configuration in isiNdebele, a Bantu language largely spoken in southern parts of Zimbabwe as well as parts of South Africa. Bantu languages by and large phonologically and/or phonetically repair vowel hiatus configurations arising from both phonological and morphophonological concatenations. The phonology of isiNdebele seems to largely favour an analysis that does not permit the surface realisation of clusters of segments of the form VV (vowel-vowel clusters). Observing such an analysis, which this paper argues to be largely ONSET motivated/triggered and the featural properties of the phonological structures of the languages under study, their reactions to such dispreferred vowel clusters and their phonotactics are here examined within the framework of Optimality Theory (OT) as enunciated by Prince and Smolensky (1991, 1993), McCarthy and Prince (1999), Archangeli (1997) and Kager (1999) as well as Distinctive Features as discussed by Chomsky and Halle (1963). Repair strategies for such configurations such as glide formation, consonantal and/or glide insertions, vowel deletion and coalescence are discussed. The analysis adopted here implicates that the resolution of these dispreferred configurations arises from incompatibilities in the features of the vowels straddling a word boundary. It argues that these repair strategies are largely motivated by language internal constraint ranking systems which in Bantu languages seem to largely prefer the preservation of [-] features over [+] features i.e. the ranking [-F']=[+F']

1.0. Introduction
The paper discusses the resolution of hiatal configurations (vowel/vocalic hiatus) in isiNdebele, a Bantu language spoken in South Africa. Vowel/vocalic hiatus refers to instances where two vowels occur adjacently/heterosyllabically in the input forms of the languages' generative grammars (Sabao, 2009). It is the separate

1 By [-] features we refer to features such as [-high], [-low], [-back], [-round] etc while by [+] features we refer to features such as [+high], [+low], [+back], [+round] etc. The thesis established here is that there seems to be an inherent motivation within the languages, in the resolution of hiatal configurations, for the preservation of the [-] features if any of the vowels at the hiatal configuration contains them. This is however done at the expense of the [+] features which are seemingly ranked lower than their [-] features counterparts and which are thus violated.
pronunciation of two adjacent vowels, sometimes with an intervening glottal stop. Vowel hiatus can also refer to the failure of two vowels straddling a word boundary to coalesce, for example by elision of the first or second vowel (Siptar, 2003; Mtenje, 1980: Ola and Pulleyblank, 1998). Vowel hiatus thus, refers to the occurrence of adjacent phonologically independent vowels within a word or morpheme, but more precisely at a morphological boundary. It is the occurrence of two or more vowels which stand as individual syllables adjacently (Sabao 2005). In order to say we have a vowel/vocalic hiatus situation/context, the two vowels, apart from occurring adjacently in an input or output form, must be independently pronounced and should also have ‘separate and independent’ phonological qualities (Sabao 2005).

2.0. Ndebele vowel and syllable structure(s)
The term Ndebele has come to be used to refer to both the language and the people who speak it. Ndebele (also often referred to as isiNdebele) is a Southern Bantu language belonging to the Nguni cluster (Zone S in the unit S44 according to Guthrie’s 1967 classifications). The cluster includes other languages such as Zulu, Xhosa, Transvaal Ndebele (often referred to as South African Ndebele) all spoken in South Africa, as well as Swazi/SiSwati, spoken in Swaziland and South Africa (Hadebe, 2006). In this thesis however, the term ‘Ndebele’ is used to refer to the Zimbabwean variety of the language. Ndebele/isiNdebele, like many other Bantu languages, is a five vowel phoneme system. The quality of the vowels [e] and [o] in Ndebele match cardinal vowels 3 and 6, [e] and [o], fairly closely, rather than numbers 2 and 7, [e] and [o], in most environments. There are no underlying long vowels in the language and neither are there long vowels that occur as a result of phonological processes such as elision and coalescence and/or other phonetic processes. Unlike in most Bantu languages, in Ndebele there is no compensatory lengthening of vowels in either the Underlying Representations (URs) and/or the Phonetic Representations (PRs) a phenomenon that results from attempts to preserve V-slots after phonological processes of deletion or merger of juxtaposed vowel. There are also no diphthongs in Ndebele. The vowels of Ndebele can be represented diagrammatically as below. The diagram illustrates a comparison between the places articulation of Ndebele vowels compared to cardinal vowels which in the diagram are marked 1 to 8 as reflected on the IPA chart.

\[\text{SiSwati is the Swazi term for Swazi language}\]
The low vowel /a/ in Ndebele seems to match the cardinal vowel, the low central /a/ whereas the mid front vowel /e/ and mid back vowel /o/ are articulated lower than their cardinal vowel equivalents, vowels 2 and 7 and also lower than those of other Bantu languages. The distinctive features of these vowels as represented on the above chart are as follows (NB: The features diagram also supplies redundant values):

```
  i  e  a  o  u
BACK - - - + +
HIGH + - - - +
LOW - - + - -
ROUND - - - + +
```

The basic syllable structure in Ndebele is the canonical CV syllable. It however can be argued that the basic structure could also be the V(CV) structure in light of the fact that most nouns in the language begin in a vowel since the language still has the IV (initial vowel) or pre-prefix as part of both is phonetic and orthographic inventories. This IV, it has been proposed is maintained from Proto-Bantu (Greenberg, 1963; Guthrie, 1967).

1. (i) **V(CV) structure**
 a) a.kha ‘build’
 b) e.nza ‘do’
 c) i.nja ‘dog’
 d) o.ma ‘get dry/get thirsty’
 e) u.ba.ba ‘father’

(ii) **CV structure**
 a) .ma ‘mother’
 b) we.na ‘you’
 c) mi.na ‘me’
3.0. Glide formation in Ndebele

Glide formation is one of the major hiatus resolution strategies in Ndebele. The most commonest example of contexts in which such a process occurs is when the high back vowel [u] of the infinitive prefix /uku-/ 'to' in isiNdebele juxtaposed with vowel commencing verbal forms undergoes glide formation. Unlike in other Bantu languages, in Ndebele glide formation does not result in a compensatorily lengthened surface vowel. This process in Ndebele is similar to the process referred to by Fortune (1985) as morphophonemic change and is in line with the [v'w/ vowel] rule.

The rule that governs gliding in Ndebele (as is with many other southern Bantu languages) is that a [+high, -low] and [+round] vowel loses a mora (or glides) before another vowel. The second vowel in the sequence can be low, mid or high. Such a process is schematized as in 2 below:

\[
\begin{array}{c}
\sigma \\
\mu \\
\end{array}
\]

<table>
<thead>
<tr>
<th>\sigma</th>
<th>\sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mu</td>
<td>\mu</td>
</tr>
</tbody>
</table>

We can argue here that this process is triggered by language-internal phonological and morphophonological rules that disprefer the surfacing of vowel sequences in the PRs of the language. Not only does the language disprefer such hiatal configurations phonetically, it also seems to disprefer their occurrence in its orthographic forms. Let us consider the following examples in 3 below. Again, we note that as with other hiatus resolution mechanisms such as coalescence, in Ndebele glide formation does not result in long surface vowels. This again is in 'disregard' for, and in violation of place maintenance constraints and thus in violation of IDENT-IO and UNIFORMITY.

3.
(a) uku- enza [ukwenza] /u.i#e 2 /'w ie 2/ 'to do'
inf- do
(b) uku- akha [ukwakha] /u.i#a 2 /'w i#a 2/ 'to build'
inf- build
(c) uku- ala [ukwala] /u.i#a 2 /'w i#a 2/ 'to refuse'
inf- refuse
(d) uku- esula [ukwesula] /u.i#u 2 /'w i#u 2/ 'to wipe/rub'
inf- wipe/rub
This kind of glide formation in which the high vowel [u] turns into a glide [w] in the face of all the other vowels except the mid back vowel [o] can be schematized as below:

This happens through a process in which the V_1 (which has the features [+high] and/or [+round] and/or [+back]) undergoes delinking with its associated mora, by which process which is mora preserving, attaches to V_2. V_1 however maintains its attachment to the root node thus preserving articulatory features.

We note that, like in other languages glide formation in Ndebele, if argued to be ONSET driven is also invariably in violation of *CG as well as IDENT-IO as illustrated in Figure 1 below;

5. ONSET: *[s V: Syllables must have onsets
7. IDENT-IO: Corresponding input and output segments should bear identical specifications for feature(s)

<table>
<thead>
<tr>
<th>Input</th>
<th>ONSET</th>
<th>*CG</th>
<th>IDENT-IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>/uku-enz-a/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) /ukwe.nza/</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(b) /uku.e.nza/</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 1: Gliding of the high vowel /u/ in Ndebele (with no compensatory lengthening)

We thus can argue that what really conditions and motivates glide formation here is the need to preserve segmental identity as well as featural identity between the input and the output. This is evidenced by the fact that the resultant glide is featurally identical to the initial vowel as it retains its [+high], [+back] and [+round]
features. Glide formation here is elected above other possible resolution strategies because it maximizes featural as well as articulatory identity while in the process also successfully eliminating the dispreferred VV configuration. This is more vividly expressed in Figure 2 below.

8. **PARSE[F]**: Preserve an input feature [F] in the output.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) /uku-enza/</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>(b) /ukwenza/</td>
<td>"</td>
<td>"</td>
<td></td>
<td></td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>(c) /ukenza/</td>
<td>"</td>
<td>"</td>
<td>(i)</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>(d) /ukunza/</td>
<td>"</td>
<td>"</td>
<td>(i)</td>
<td>"</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

Fig 2: Gliding of high vowels in Ndebele (with no compensatory vowel lengthening)

Here we note that candidate (a) is in fatal violation of ONSET due to heterosyllabification and thus is eliminated. Candidates (c) and (d), which could be showing either coalescence (symmetric fusion) or elision, are in fatal violation of PARSE[+high] and PARSE[-high] respectively. This is so because (c) fails to preserve the [+high] feature of the [+high, -low] prefix vowel \(/u/ while (d) fails to preserve the feature [-high] of the [-high, -low] of the \(V_2\) vowel \(/e/\). Both however manage to preserve the [-low] feature, a feature shared by both of the initial vowels. They however both get eliminated because, as with Chichewa data, they fail to reserve the [+back] and [-back] features of the input vowels respectively. Candidate (b) despite a violation of IDENT(\(\mu\)), due to the changes in mora count manages to maximize featural and articulatory identity.

If however, the same infinitive prefix is juxtaposed with a vowel \(/o/ commencing verbal form, elision of the \(V_1\) (the prefix final vowel) and consonantal epenthesis instead of glide formation/insertion variably occur. Consider the following example in which the former process (\(V_1\) elision) occurs in 9 (a) and the latter (epenthesis) in 9 (b):

9. (a) **uku-oma** [ukoma] /u\(_1\)#o\(_2\)/'[o\(_2\) to dry/get thirsty' inf- dry/thirst
 (b) **uku-onal** [ukubona] /u\(_1\)#e\(_2\)/'[e\(_2\) to see' inf- see

We observe and question why, despite the conditions for elision being also satisfied by 9 (b) in as much as they are satisfied by 9 (a), epenthesis and not elision takes place. In the absence of such an explanation I would propose the existence of some language internal phonetic rule or at the least an oversight on the part of
Ndebele orthographers and/or a shortcoming on the part of consistency within both the language’s orthography and/or its phonological rules.

[I am however made to understand that the correct way of writing as well as pronouncing the word for ‘see’ in Ndebele is not ‘ona’ but ‘bona’ [bona] and the variety of ‘ona’ [ona] used in the above example is only possible in South African languages like Sotho and Zulu, which share genetic descendency with the Zimbabwean variety of Ndebele under study here.

In this regard, we are informed that the process that occurs at such a boundary in the other languages is then elision and not epenthesis as follows:

10. uku- ona /ukona/ 'to see'
 inf- see

(V₁ elision in Zulu and/or Xhosa)

When the word occurs in Zimbabwean Ndebele as /ukona/ as in the above example, it does not mean ‘to see’ but rather ‘to make mistakes’,

11. uku- ona /ukona/ 'to make mistakes/
 sin/transgress'
 inf- make mistake/sin/transgress

We therefore can thus argue for V₁ elision, precisely for this one example as opposed to consonantal epenthesis.]

The form of consonantal epenthesis exemplified in Ndebele by example 9 (b) also occurs at the same preposition – noun boundary that is discussed for coalescence in 13. The reason why coalescence does not take place here as it does in 13 is because of the presence of the plural marker vowel /o/. Coalescence at such a boundary in Ndebele only takes place if the noun that provides V₂ commences in the initial vowels /i/, /u/ and /a/ (c.f. 13). If the nouns begin with the vowel /o/, which could either be a plural marker or an agreement morpheme, consonantal epenthesis and not coalescence takes place. Consider the following examples in 12 regards that;

12. (a) la- o- mama [labomama]/a, #oz/ '1 [a, b, o2] 'with mothers' with/ by/ and- pl- mother

3 This ‘revelation’ comes from social discussions with first language speakers of the language. It does not have scholarship backing and thus should not be viewed as conclusive and binding, but rather as an observation in obitur.
(b) la- o- mangoye [labomangoye] /a₁\#o₂/’! [a₁b₂o₂] ‘with cats’
with/ by/ and/ pl- cat

Epenthesis in the above contexts is triggered by the presence of the mid back vowel /o/ juxtaposed with the low central vowel /a/ of the prepositional prefix. We also can argue that this happens because the V₂ is not only a single segment morpheme but also a plural marker.

This is so in light of the realisation that when those same words occur in the singular forms, coalescence and not epenthesis occurs. Compare 13 (a) and 13 (b) below:

13. (a) Coalescence with singular forms
 (i) la- umangoye [a₁#u₂]'! [o₃] /omangoye/ ‘with/and/ by a cat’
with/ and/ by-1s- cat
 (ii) la- umama [a₁#u₂]'! [o₃] /omama/ ‘with/and/ by a mother’
with/ and/ by-1s- mother

(b) Epenthesis with plural forms
 (i) la- omangoye [a₁#o₃]'! [a₁b₂] /omangoye/ ‘with/and/ by cats’
with/ and/ by-1s- cat
 (ii) la- omama [a₁#o₃]'! [a₁b₂] /omama/ ‘with/and/ by mothers’
with/ and/ by-1s- mother

We can account for this kind of epenthesis as follows:

Fig 3: Epenthesis in plural forms in Ndebele

<table>
<thead>
<tr>
<th>Input:</th>
<th>ONSET</th>
<th>PARSE[F]</th>
<th>PARSE[F]-1seg</th>
<th>IDENT-IO</th>
<th>DEP-IO</th>
<th>UNIFORMITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) /la-o.ma.ma/</td>
<td>*!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) /la-bo.ma.ma/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (c) /ko.ma.ma/ | *! | * | * | | | *
| (d) /la.ma.ma/ | *! | *(?) | * | * | | *

We observe here that candidate (a) is eliminated because it violates ONSET (preserves the vowel sequence), candidate (c) not only deletes a segment but also deletes a single segment (the plural marker morpheme /o/). The problem is that such kind of deletion renders it impossible to distinguish this form from the singular form (c.f. 13 (a) above). Candidate (d) also deletes a segment and thus violates MAX and gets eliminated. The two candidate, (c) and (d) thus also violate
PARSE[F'] (because (c) fails to preserve the [+low] feature of the input vowel /a/ while candidate (d) fails to parse the [-low] feature of the input vowel /o/) as well as PARSE[F]-1seg, MAX, MAX-V and DEP-IO and therefore get eliminated. The candidates thus get eliminated for a violation of PARSE[F']

This kind of consonantal epenthesis is evidence of the key observation that epenthesis and syllabification are inextricably connected (Selkirk 1981, Ito 1986, 1989). Epenthesis is largely motivated towards the elimination of onsetless syllables. Accordingly, an epenthetic segment thus is an empty structural position whose presence is required by the ‘language specific syllable template’ (Archangeli 1999). This syllabic make up blueprint dictates whether or not an onset is obligatory/necessary as exemplified by the examples in 13 above in which we can argue that the language’s syllabic blueprint dictates the repair of ONSET in word medial syllables.

Kager (1999) proposes that such kind of epenthesis exemplified by the consonant /b/ insertion as discussed above is necessitated by ‘an imperfect match between the input segments and the template’. The mismatch here arises from the realisation of a vowel sequence in the UR which do not have an intervening consonant whereas the syllable blueprint obligates an onset.

Epenthesis, any form of epenthesis, involves the violation of faithfulness constraints. This is so because the epenthetic segment containing output diverges from the input by the presence of an epenthetic segment, one that ‘is not sponsored by the lexical representation’. A schematic representation of the violation of DEP-IO through epenthesis is as follows:

```
14. labomama
```

As a hiatus resolution mechanism, epenthesis here is triggered by the higher ranking of the constraint ONSET over DEP-IO.

This kind of ranking is illustrated by Figure 4 below, containing only the two constraints ONSET and DEP-IO which functionally differ in the presence versus the absence of the epenthetic consonant respectively.
Epenthesis in this regard can be argued to have been primarily motivated by the desire to eliminate onsetless syllables. We note that, because Ndebele is an Initial Vowel (IV) using language, we observe that the IV always surfaces as an onsetless syllable and that the constraint ONSET only thus applies exclusively to word medial/internal syllables. Onsetless syllables are only allowed initially, but input hiatus cannot surface in the output. This in itself is a problem for an ONSET analysis, since only in word medial position is the ONSET violation repaired.

Bearing in mind that this discussion culminated from a discussion on glide formation in the language, we would also consider, that since in the same boundary, when the other vowel occur after the infinitive prefix /uku-/ glide formation occurs, the fact that in the same occurrence the occurrence of /o/ triggers epenthesis is an indication of a higher preference for epenthesis over glide formation is evidence of a higher ranking of ONSET above *CG. This ranking is illustrated in Figure 5 below.

\[
\begin{array}{|c|c|c|}
\hline
\text{Input: } /\text{uku-on-a}/ & \text{ONSET} & *CG & \text{DEP-IO} \\
\hline
(a) /\tilde{\text{l}}\text{a.bo.ma.ma}/ & & * & \\
(b) /\text{l}a\.\text{wo.ma.ma}/ & & *! & \\
(c) /\text{la.o.ma.ma}/ & & *! & \\
\hline
\end{array}
\]

\textit{Fig 5: Epenthesis (consonantal) in Ndebele}

Also, as indicated in the example, despite the fact that candidate (b) also still does not also violate ONSET, it fails to be the optimal candidate. The reason could be that in the environment under discussion, the occurrence of the /o/ must have

This is also referred to as the pre-prefix vowel
triggered a rule that orders epenthesis over glide formation. I would again propose language internal constraints that militate against the occurrence of such complex onsets.

In the same vein we also consider example 9 (a) in which deletion and not glide formation occurs as is ordinarily supposed to. While I am still not sure why in the environment 9 (a) deletes and 9 (b) epenthesises, I would again propose as in 9 (b) that in 9 (a) deletion is triggered by the same desire to eliminate onsetless syllables. In many a language, elision is largely onset driven (c.f. Pulleyblank 1998). A failure to delete in this regard violates ONSET. The resolution of the vowel sequence through elision violates MAX-IO. A schematic representation of such a violation is as follows:

15. \[\text{\underline{u-}} \text{\underline{k}} \text{\underline{u}} \text{\underline{o}} \text{\underline{m}} \text{\underline{a}} \]

\[\text{\underline{u-}} \text{\underline{k}} \text{\underline{o}} \text{\underline{m}} \text{\underline{a}} \]

This can also be illustrated as in Tableau 6 below:

<table>
<thead>
<tr>
<th>Input: /uku-om-a/</th>
<th>ONSET</th>
<th>MAX-IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) ?/u.ko.ma/</td>
<td></td>
<td>*!</td>
</tr>
<tr>
<td>(b) /u.ku.o.ma/</td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>

Fig 6: Deletion of the high vowel /u/ in Ndebele

Again the tableau contains only the two constraints describing what occurs in deletion environments. And because we observe this kind of deletion occurring in an environment that normally dictates glide formation, we observe that there must be a constraint ranking system that orders deletion above glide formation in the vowel /o/ occurring environments. We represent such a constraint ordering as below:
Input: /uku-om-a/

<table>
<thead>
<tr>
<th>ONSET</th>
<th>*CG</th>
<th>MAX-IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) /u.ko.ma/</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(b) /u.kw.o.ma/</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>(c) /u.ku.o.ma/</td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>

Fig 7: Deletion of the high vowel /u/ in Ndebele

I would maintain that I am still not sure why there is a variation between epenthesis and deletion in the examples discussed above.

4.0. Coalescence in Ndebele

Like with other Bantu languages such as Shona, Zulu and Chichewa, at the functional word-lexical word boundary involving prepositions and nouns, Ndebele resolves vowel sequences through coalescence. The most interesting thing to note however is that unlike in other languages such as Shona, Ndebele, at such a boundary, confronted with a /a+a/ sequences, opts for the coalesced vowel /a/ which is non-preferred in Shona contemporarily/synchronically but which we can argue to have been attested for within the language diachronically (as Shona would prefer a variation of the /e/ and the /o/). Consider the following examples in 16.

16.

(a) la- umu-ntu [lomuntu] /a₁ #u₂/’ /o₃/ ‘with/by/and a person’
with/by/and- 1-person

(b) la- um-ntwana [lomntwana] /a₁ #u₂/’ /o₃/ ‘with/by/and a child’
with/by/and- 1-child

(c) la- um-fana [lomfana] /a₁ #u₂/’ /o₃/ ‘with/by/and a young person’
with/by/and- 1-young man/person

(d) la- aba-ntu [labantu] /a₁ #a₂/’ /a₃/ ‘with/by/and people’
with/by/and- 2-people

(e) la- aba-fazi [labafazi] /a₁ #a₂/’ /a₃/ ‘with/by/and women’
with/by/and- 2-women

(f) la- ama-siko [lamasiko] /a₁ #a₂/’ /a₃/ ‘with/by/and customs’
with/by/and- 4-nations

(g) la- i- ndlu [lendlu] /a₁ #i₂/’ /e₃/ ‘with/by/and a house’
with/by/and- 10-houses

(h) la- i- nkomo [lenkomo] /a₁ #i₂/’ /e₃/ ‘with/by/and cattle’
with/by/and- 10-cattle

(i) la- i- nja [lenja] /a₁ #i₂/’ /e₃/ ‘with/by/and a dog(s)’
with/by/and- 10-dog
Coalescence in Ndebele does not result in a compensatorily lengthened surface vowel. As a repair strategy in this regard invariably violates a constraint MAX-IO, which demands the preservation of all input vowel segments in the output. The constraint NLV which lengthens the surface vowel in a bid to maintain V-slots and in the process preserve segmental identity is thus ranked high in the language. In fact it must be ranked higher than MAX-V which aims at segmental identity as we observe that the output vowels are not compensatorily lengthened. Consider the following figure in this regard:

<table>
<thead>
<tr>
<th>Input: /la-irja/</th>
<th>ONSET</th>
<th>NLV</th>
<th>MAX-V</th>
<th>MAX-IO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) /le.nja/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) /le.nja/</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Fig 8: Coalescence of low + high vowels /a/ + /i/ to mid vowel /e/ in Ndebele.

Despite the fact that both candidates eliminate the hiatal configuration, and thus do not violate ONSET, candidate (b) gets eliminated because of its failure to preserve segmental identity and place.

This kind of coalescence in Ndebele (which is also height coalescence) can be described as being asymmetric, that is to say, sequences of /V₁ + V₂/ resolve differently depending on the feature specification of the two vowels: sequences of low + low vowels merge into a similar low vowel (as in examples 16 (d) - (f)), low + high vowel sequences result in a mid vowel (as in examples 16 (a) - (c) and 16 (g) - (i)). The resultant vowel, it should be noted agrees in rounding and/or backness with the second vowel of the sequence.

Asymmetric coalescence can be distinguished from another form of coalescence called symmetric coalescence in that in the latter the resultant vowel from the vowel merger does not rely on the serial ordering of the vowels in the sequence whereas in the former it does. In symmetric coalescence, the same vowel combinations will yield similar resultant vowel, for example, according to Tanner (2007), in the language Afar sequences of /u+e/ and /e+u/ would yield the coalesced vowel [o] irrespective of their differences in ordering.

5 For a more insightful discussion on these different kinds of coalescence, see Tanner (2007).
Regards this, we observe that a change/reversal in the serial ordering of the vowels would yield or rather, trigger the ordering of other repair strategies before coalescence. For instance, while we note that the vowel sequence of the low [a] and the high back [u] would trigger coalescence, with the coalesced vowel being the mid [o], if the sequence is reversed i.e. the high back [u] occurring in V, position before a low [a], the high vowel undergoes gliding as in the following examples:

17. (a) uku- azi /ukwazi/ ‘to know’
inf- know
(b) uku- akha /ukwakha/ ‘to build’
inf- build

NB: An in-depth discussion of this process has been done in section 1.0. above.

We can, in line with such a thesis, summate the asymmetric coalescence that takes place in 16 (d) – (f) as follows:

18. V1 [-high, +low] V2 [-high, +low]
 \ /
 V1, 2 [+high, -low]

(Fusion of identical vowels /a+a/? /a/ in Ndebele)

Whereas that which occurs in the remainder of all the other examples in 16 as follows:

19. V1 [-high, +low] V2 [+high, -low]
 \ /
 V3 [-high, -low]

(Fusion of dissimilar vowels /a+u/ /o/ and /a+i/ /e/ in Ndebele)

The resolution of vowel sequences through coalescence reflected in the above examples (16) and schematized as above (in 18 and 19) result from a higher ranking
of ONSET as well as a subsequent violation of the lower ranked IDENT-IO, MAX-IO and UNIFORMITY as exemplified below.

<table>
<thead>
<tr>
<th>Input: /la-inja/</th>
<th>ONSET</th>
<th>IDENT-IO</th>
<th>UNIFORMITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) /le.nja/</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(b) /la.i.nja/</td>
<td></td>
<td>*!</td>
<td></td>
</tr>
</tbody>
</table>

Fig 9: Coalescence of low + high vowels /a/ + /i/ to mid vowel /e/ in Ndebele.

The ranking here is thus ONSET»IDENT-IO, MAX-IO. We also note that unlike in other Bantu languages in which hiatus resolution results in lengthening of the resultant vowel in a bid to preserve place (V-slots), in Ndebele the coalescence vowel is typically short. This is because, as earlier highlighted, there are no underlying and/or long vowels in the language. The non-occurrence of such long vowels in resolved contexts thus, as indicated in Tableau 9, is in violation of IDENT-IO and UNIFORMITY and fails to maximize segmental identity between input and output as well as articulatory features. We also note in this regard that coalescence in the language is height sensitive, position sensitive and place sensitive. It is some form of segmental fusion in which two segments in the input correspond to a single segment in the output. Coalescence thus in line with this thesis yields resultant vowels whose features are dictated by a higher ranking of IDENT(-F) over IDENT(+F) in which equation (F) represents the vowel articulatory features [high] and [low]. I note, for example, from the example in Tableau 9 that despite the V₂ having the feature [+high], the resultant coalesced mid vowel [e] has the articulatory feature [-high] also a feature of the V₁ as indicated in 20 below.

| 20. [a]₁[-high, +low] [u]₂[+high, -low] |
| [o]₃[-high, -low] |

(Fusion of low vowel /a/ and high /u/ into mid vowel /o/ in Ndebele)

This kind of coalescence argued for here to be conditioned by the ranking of IDENT(-F) over IDENT(+F). In this regard, there is a constraint ranking hierarchy that would violate constraints aimed at preserving all segments of the lexical word, especially the [+high] feature and/or other features of the lexical word initial vowel in a bid to
preserve the feature [-high] and or other features of the prefix (functional word) final word vowel. The constraints used in determining the surface form from the inputs are PARSE[-high], PARSE[+high]-lex, PARSE[F']-lex and PARSE[F'].

Such being the case, we argue that the output forms here are as a result of the ranking of PARSE[-high] »PARSE[+high]-lex as illustrated below;

<table>
<thead>
<tr>
<th>Input: /la.inja/</th>
<th>ONSET</th>
<th>PARSE[-high]</th>
<th>PARSE[+high]-lex</th>
<th>PARSE[F’]-lex</th>
<th>PARSE[F’]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) /la.<a>i.nja/</td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) /la.<i>nja/</td>
<td></td>
<td></td>
<td>*</td>
<td>*!</td>
<td></td>
</tr>
<tr>
<td>(c) /le.nja/</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) /la.i.nja/</td>
<td></td>
<td>*!</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Fig 10: Coalescence of low + high vowels /a/ + /i/ to mid vowel /e/ in Ndebele.

21. PARSE[-high]: Preserve an input feature [-high] of either the root or affix in the output. (Tanner, 2007)

22. PARSE[+high]-lex: A feature [+high] present in the input lexical (root) morpheme must be parsed in the output. (Casali, 1996)

23. PARSE[F’]-lex: Other features of the root morpheme vowel must be parsed in the output. (Tanner, 2007)

24. PARSE[F’]: Preserve an input feature [F] in the output.

In line with the argument that we have established so far, i.e. that deletion (and at times other asymmetric repair strategies) is conditioned by a higher ranking of feature [-high] over features [+high], we observe in the above tableau, that candidate (a) violates the undominated constraint PARSE(-high) and thus gets eliminated. Candidates (b) and (c) have almost identical violations in the table except that candidate (b) fails to preserve, in line with the established [-F] » [+F], the [-F] feature, i.e. the feature [-back] of the input vowel [i] and thus again gets eliminated.

* These other features of the vowels represented here by [F’] include such features as [+round], [+back], [+front], [+low] etc.
In the same manner that we have coalescence taking place at morphological boundaries involving the preposition /la-/ and a vowel commencing noun/ verbal form, the same process also occurs when a hiatal configuration occurs involving the instrumental prefix /nga-/ and a vowel commencing noun. In such circumstances, the merger rules described in 18 and 19 above also apply. Consider the following examples in 25 below.

25. (a) nga- amanzi
 with- water
 [ngamanzi] /a₁#a₂/’! [a₃] ‘with water’

 (b) nga- ilitshe
 with- stone
 [ngelitshe] /a₁#i₂/’! [e₃] ‘with a stone’

 (c) nga- umlomo
 with- mouth
 [ngomlomo] /a₁#u₂/’! [o₃] ‘with the mouth’

Again the process as that which occurs with the prepositional prefix + stem boundary applies, thus;

26. [a]₁ [-high, +low] [u]₂ [+high, -low]

 [o]₃ [-high, -low]

 (Fusion of low vowel /a/ and high /u/ into mid vowel /o/ in Ndebele)

This process, at the surface level is also motivated by the need to eliminate dispreferred vowel clusters, in the process incurring the violations represented below;

<table>
<thead>
<tr>
<th>Input: /nga-umlomo/</th>
<th>ONSET</th>
<th>IDENT-IO</th>
<th>UNIFORMITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) /ngo.m.lo.mo/</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(b) /nga.u.m.lo.mo/</td>
<td>*!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 11: Coalescence of low + high vowels /a/ + /u/ to mid vowel /o/ in Ndebele
We observe here, as is with the examples above and below, that the features of the coalesced vowels result from a ranking of the PARSE[-F] » PARSE[+F] as well as that of IDENT[-F] » DENT[+F].

Again the same kind of coalescence also occurs at the boundary between the possessive concord /wa-/ 'of' and a vowel commencing noun. The possessive concord in Ndebele is formulated by merging together the particle /-a-/ with the subject concord of the noun in question. The process of coalescence here again yields the same vowel patterns as those hypothesized by Doke (1943) and discussed above. For evidence of this consider the following examples in 27 below.

27. (a) wa- abafazi [wabafazi] /a, #a₂/ 'the women's'
of- 3women
(b) wa- inkazana [wenkazana] /a, #i₂/ 'for the girl/the girl's'
of- girl
(c) wa- umfana[womfana] /a, #u₂/ 'the young man's'
of- young man

In the above examples of coalescence in Ndebele i.e. examples 16, 25 and 27, we again observe that the sequences of low + high vowels that occur at word-internal morpheme boundaries are realized as mid vowels, with the backness and rounding of the resulting vowel corresponding to the rounding of the second vowel in the sequence. This second vowel is again the IV or the lexical word initial vowel.

<table>
<thead>
<tr>
<th>Input: /wa-umfazi/</th>
<th>ONSET</th>
<th>PARSE[-high]</th>
<th>PARSE[+high]-lex</th>
<th>PARSE[F]-lex</th>
<th>PARSE[F']</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) /wa,#u.m.fazi/</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(b) /wa,<u>m.fazi/</td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>(c) /wo.m.fazi/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) /wa.u.m.fazi/</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig 12: Coalescence of low + high vowels /a/ + /u/ to mid vowel /o/ in Ndebele

Again, as with the other examples discussed above, the same asymmetry rules, the same ranking hierarchy applies i.e. deletion is motivated by a higher ranking of feature [-high] over features [+high], we observe in the above tableau, that candidate (a) violates the high ranked constraint PARSE[-high] and thus gets eliminated. Candidates (b) and (c) have almost identical violations in the table except that candidate (b) fails to preserve, in line with the established PARSE[-F] » PARSE[+F], the [-F] feature, i.e. the feature [-back] of the input vowel [i] and thus again gets eliminated.
Casali (1996) deals with this kind of asymmetric coalescence evidenced here in Ndebele and discussed above, specifically positing that it arises when both feature-sensitive and position-sensitive constraints are active in the evaluation of output candidates; that is, the feature specification [-high] must be preserved in preference to [+high], otherwise all features of the V₁ are to be preserved (c.f. Casali, 1996 and Tanner, 2007).

Conclusion
We note, by observing instances in which coalescence occurs in Ndebele with dissimilar vowels that it is largely asymmetric coalescence, i.e. the resultant surface vowel is determined by the serial ordering of the vowels at the boundary (the feature specifications of the vowels in the VV sequence). It is also observed that in instances where coalescence takes place with dissimilar vowels the sequence of vowels would be that of a low vowel and a high vowel and the resultant vowel being a non-high vowel (i.e) a mid vowel. Such a kind of coalescence which takes place in Ndebele also follows in line with the [-F] » [+F] thesis established above in the sense that the resultant mid vowel neutralizes the [-F'] ([+] features) of both vowels, i.e. the [+low] of the low vowels and the [+high] of the high vowels resulting in a vowel that contains the features specifications [-high] and [-low]. On the other hand elision in Ndebele is height conditioned i.e. primarily motivated by the need to preserve the [-F'] (as we observe that in Ndebele there is deletion of low vowels if juxtaposed with non-low vowels containing the features [-high, -low]). Elision in Ndebele is thus explainable through the ranking system that subordinates the [-F'] constraints below the [+F] ones, in this case the ranking of IDENT[+F] below IDENT[-F].

References

